Fitzpatrick Functions and Continuous Linear Monotone Operators
نویسندگان
چکیده
The notion of a maximal monotone operator is crucial in optimization as it captures both the subdifferential operator of a convex, lower semicontinuous, and proper function and any (not necessarily symmetric) continuous linear positive operator. It was recently discovered that most fundamental results on maximal monotone operators allow simpler proofs utilizing Fitzpatrick functions. In this paper, we study Fitzpatrick functions of continuous linear monotone operators defined on a Hilbert space. A novel characterization of skew operators is presented. A result by Brézis and Haraux is reproved using the Fitzpatrick function. We investigate the Fitzpatrick function of the sum of two operators, and we show that a known upper bound is actually exact in finite-dimensional and more general settings. Cyclic monotonicity properties are also analyzed, and closed forms of the Fitzpatrick functions of all orders are provided for all rotators in the Euclidean plane. 2000 Mathematics Subject Classification: Primary 47H05; Secondary 47B25, 47B65, 90C25.
منابع مشابه
Monotone Linear Relations: Maximality and Fitzpatrick Functions
We analyze and characterize maximal monotonicity of linear relations (set-valued operators with linear graphs). An important tool in our study are Fitzpatrick functions. The results obtained partially extend work on linear and at most single-valued operators by Phelps and Simons and by Bauschke, Borwein and Wang. Furthermore, a description of skew linear relations in terms of the Fitzpatrick fa...
متن کاملThe Brézis-Browder Theorem revisited and properties of Fitzpatrick functions of order n
In this note, we study maximal monotonicity of linear relations (set-valued operators with linear graphs) on reflexive Banach spaces. We provide a new and simpler proof of a result due to BrézisBrowder which states that a monotone linear relation with closed graph is maximal monotone if and only if its adjoint is monotone. We also study Fitzpatrick functions and give an explicit formula for Fit...
متن کاملMaximal Monotonicity of Dense Type, Local Maximal Monotonicity, and Monotonicity of the Conjugate Are All the Same for Continuous Linear Operators
The concept of a monotone operator — which covers both linear positive semi-definite operators and subdifferentials of convex functions — is fundamental in various branches of mathematics. Over the last few decades, several stronger notions of monotonicity have been introduced: Gossez’s maximal monotonicity of dense type, Fitzpatrick and Phelps’s local maximal monotonicity, and Simons’s monoton...
متن کاملAutoconjugate representers for linear monotone operators
Monotone operators are of central importance in modern optimization and nonlinear analysis. Their study has been revolutionized lately, due to the systematic use of the Fitzpatrick function. Pioneered by Penot and Svaiter, a topic of recent interest has been the representation of maximal monotone operators by so-called autoconjugate functions. Two explicit constructions were proposed, the first...
متن کاملExamples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B . F . Svaiter
In this paper, we give two explicit examples of unbounded linear maximal monotone operators. The first unbounded linear maximal monotone operator S on l is skew. We show its domain is a proper subset of the domain of its adjoint S∗, and −S∗ is not maximal monotone. This gives a negative answer to a recent question posed by Svaiter. The second unbounded linear maximal monotone operator is the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 18 شماره
صفحات -
تاریخ انتشار 2007